preprint csv-file github raw data

This website supplements the preprint

Rasmussen invariants of Whitehead doubles and other satellites
by L. Lewark and C. Zibrowius
For any c equal to a prime number or 0, the paper defines certain knot invariants \(\vartheta_c\) that govern the behaviour of the Rasmussen invariants \(s_c\) over fields of characteristic \(c\) under satellite operations with patterns of wrapping number 2.

Table of \(\boldsymbol{\vartheta_c}\)-invariants

Use the buttons above to select which columns are included in the table below.

Click on a row to display the metadata for the invariants in that row.

Click on the column header to sort the table by the values in that column.

Name pretzel torus \(\boldsymbol{\vartheta_{0}}\) \(\boldsymbol{\vartheta_{2}}\) \(\boldsymbol{\vartheta_{3}}\) \(\boldsymbol{\vartheta_{5}}\) \(\boldsymbol{\vartheta_{7}}\) \(\boldsymbol{\vartheta_{2}}\)-rat \(\boldsymbol{\vartheta_{3}}\)-rat \(\boldsymbol{\vartheta_{5}}\)-rat \(\boldsymbol{s_{2}}\)(2,1-cable) \(\boldsymbol{s_{3}}\)(2,1-cable) \(\boldsymbol{s_{5}}\)(2,1-cable) \(\boldsymbol{s_{2}}\) \(\boldsymbol{\sigma}\) \(\boldsymbol{\tau}\) \(\boldsymbol{\varepsilon}\) det 2bridge amphicheiral Genus-4D
03_1ᶜ 2,3 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 3 3/1 0 1
04_1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 5 5/2 1 1
05_1 2,5 6 8 6 6 6 0 0 0 8 8 8 4 -4 2 1 5 5/1 0 2
05_2 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 7 7/3 0 1
06_1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 9 9/7 0 0
06_2 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 11 11/4 0 1
06_3 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 13 13/5 1 1
07_1 9 12 9 9 9 0 0 0 12 12 12 6 -6 3 1 7 7/1 0 3
07_2 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 11 11/5 0 1
07_3 6 8 6 6 6 0 0 0 8 8 8 4 -4 2 1 13 13/9 0 2
07_4 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 15 15/11 0 1
07_5 6 8 6 6 6 0 0 0 8 8 8 4 -4 2 1 17 17/7 0 2
07_6 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 19 19/7 0 1
07_7 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 21 21/8 0 1
08_01 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 13 13/11 0 1
08_02 6 8 6 6 6 0 0 0 8 8 8 4 -4 2 1 17 17/6 0 2
08_03 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 17 17/4 1 1
08_04 -3 -4 -3 -3 -3 0 0 0 -2 -2 -2 -2 2 -1 -1 19 19/14 0 1
08_05 6 8 6 6 6 0 0 0 8 8 8 4 -4 2 1 21 no 0 2
08_06 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 23 23/10 0 1
08_07 -3 -4 -3 -3 -3 0 0 0 -2 -2 -2 -2 2 -1 -1 23 23/9 0 1
08_08 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 25 25/9 0 0
08_09 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 25 25/7 1 0
08_10 -3 -4 -3 -3 -3 0 0 0 -2 -2 -2 -2 2 -1 -1 27 no 0 1
08_11 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 27 27/10 0 1
08_12 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 29 29/12 1 1
08_13 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 29 29/11 0 1
08_14 3 4 3 3 3 0 0 0 4 4 4 2 -2 1 1 31 31/12 0 1
08_15 6 8 6 6 6 0 0 0 4 -4 2 1 33 no 0 2
08_16 -3 -4 -3 -3 -3 0 0 0 -2 2 -1 -1 35 no 0 1
08_17 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 37 no 1 1
08_18 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 45 no 1 1
08_19ᶜ 3,3,-2 3,4 8 8 9 8 8 0 0 0 12 12 6 -6 3 1 3 no 0 3
08_20 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 9 no 0 0
08_21 3 4 3 3 3 0 0 0 2 -2 1 1 15 no 0 1
09_01 12 16 12 12 12 0 0 0 8 -8 4 1 9 9/1 0 4
09_02 3 4 3 3 3 0 0 0 2 -2 1 1 15 15/7 0 1
09_03 9 12 9 9 9 0 0 0 6 -6 3 1 19 19/13 0 3
09_04 6 8 6 6 6 0 0 0 4 -4 2 1 21 21/5 0 2
09_05 3 4 3 3 3 0 0 0 2 -2 1 1 23 23/17 0 1
09_06 9 12 9 9 9 0 0 0 6 -6 3 1 27 27/5 0 3
09_07 6 8 6 6 6 0 0 0 4 -4 2 1 29 29/13 0 2
09_08 3 4 3 3 3 0 0 0 2 -2 1 1 31 31/11 0 1
09_09 9 12 9 9 9 0 0 0 6 -6 3 1 31 31/9 0 3
09_10 6 8 6 6 6 0 0 0 4 -4 2 1 33 33/23 0 2
09_11 -6 -8 -6 -6 -6 0 0 0 -4 4 -2 -1 33 33/14 0 2
09_12 3 4 3 3 3 0 0 0 2 -2 1 1 35 35/13 0 1
09_13 6 8 6 6 6 0 0 0 4 -4 2 1 37 37/27 0 2
09_14 0 0 0 0 0 1 1 1 0 0 0 0 37 37/14 0 1
09_15 -3 -4 -3 -3 -3 0 0 0 -2 2 -1 -1 39 39/16 0 1
09_16 9 12 9 9 9 6 -6 3 1 39 no 0 3
09_17 3 4 3 3 3 2 -2 1 1 39 39/14 0 1
09_18 6 8 6 6 6 4 -4 2 1 41 41/17 0 2
09_19 0 0 0 0 0 0 0 0 0 41 41/16 0 1
09_20 6 8 6 6 6 4 -4 2 1 41 41/15 0 2
09_21 -3 -4 -3 -3 -2 2 -1 -1 43 43/18 0 1
09_22 3 4 3 3 2 -2 1 1 43 no 0 1
09_23 8 6 6 4 -4 2 1 45 45/19 0 2
09_24 0 0 0 0 0 0 0 45 no 0 1
09_25 4 2 -2 1 1 47 no 0 1
09_26 -3 -4 -3 -3 -3 -2 2 -1 -1 47 47/18 0 1
09_27 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 49 49/19 0 0
09_28 4 2 -2 1 1 51 no 0 1
09_29 -2 2 -1 -1 51 no 0 1
09_30 0 0 0 0 53 no 0 1
09_31 4 2 -2 1 1 55 55/21 0 1
09_32 -2 2 -1 -1 59 no 0 1
09_33 0 0 0 0 61 no 0 1
09_34 0 0 0 0 69 no 0 1
09_35 3 4 3 3 3 2 -2 1 1 27 no 0 1
09_36 -6 -8 -6 -6 -6 -4 4 -2 -1 37 no 0 2
09_37 0 0 0 0 45 no 0 1
09_38 4 -4 2 1 57 no 0 2
09_39 -2 2 -1 -1 55 no 0 1
09_40 2 -2 1 1 75 no 0 1
09_41 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 49 no 0 0
09_42 0 0 0 0 0 0 2 0 0 7 no 0 1
09_43 6 8 6 6 6 4 -4 2 1 13 no 0 2
09_44 0 0 0 0 0 0 0 0 0 17 no 0 1
09_45 -3 -4 -3 -3 -3 -2 2 -1 -1 23 no 0 1
09_46 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 9 no 0 0
09_47 3 4 3 3 3 2 -2 1 1 27 no 0 1
09_48 -3 -2 2 -1 -1 27 no 0 1
09_49 8 6 6 6 4 -4 2 1 25 no 0 2
10_001 0 0 0 0 17 17/15 0 1
10_002 6 -6 3 1 23 23/8 0 3
10_003 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 25 25/6 0 0
10_004 -2 2 -1 -1 27 27/20 0 1
10_005 -6 -8 -6 -6 -6 -4 4 -2 -1 33 33/13 0 2
10_006 6 8 6 6 6 4 -4 2 1 37 37/16 0 2
10_007 2 -2 1 1 43 43/16 0 1
10_008 6 8 6 6 6 4 -4 2 1 29 29/6 0 2
10_009 3 4 3 3 3 2 -2 1 1 39 39/28 0 1
10_010 0 0 0 0 0 0 0 0 0 45 45/17 0 1
10_011 3 4 3 3 3 2 -2 1 1 43 43/13 0 1
10_012 -3 -4 -3 -3 -3 -2 2 -1 -1 47 47/17 0 1
10_013 0 0 0 0 53 53/22 0 1
10_014 4 -4 2 1 57 57/22 0 2
10_015 -2 2 -1 -1 43 43/19 0 1
10_016 2 -2 1 1 47 47/33 0 1
10_017 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 41 41/9 1 1
10_018 2 -2 1 1 55 55/23 0 1
10_019 2 -2 1 1 51 51/14 0 1
10_020 2 -2 1 1 35 35/16 0 1
10_021 4 -4 2 1 45 45/16 0 2
10_022 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 49 49/36 0 0
10_023 -2 2 -1 -1 59 59/23 0 1
10_024 2 -2 1 1 55 55/24 0 1
10_025 4 -4 2 1 65 65/24 0 2
10_026 0